General Description

The MAX1698 is the most efficient driver for white or color LEDs. The device is ideal for LED backlit displays in PDAs and digital cameras, and can also be used for larger displays like those in laptop computers. Its numerous benefits include greater simplicity, lower cost, higher efficiency, longer bulb life, and greater reliability when compared to fluorescent (CCFL) and electroluminescent (EL) lamps.
The MAX1698 is a switch-mode boost controller in which LED current, rather than output voltage, provides the feedback signal. It can operate with battery inputs as low as 0.8 V . The device drives series-connected LEDs with a controlled current that is measured at a sense resistor connected at the feedback pin. The required sense resistor is typically 15Ω, not an expensive fractional-ohm value. LED current control and dimming are accomplished with an adjust input (ADJ), not with lossy current-limiting resistors. For larger light output, multiple LED banks can be connected in parallel with up to 5 W total output power.
The MAX1698 is supplied in a space-saving 10-pin μ MAX package that occupies half the space of an 8-pin SO. An evaluation kit (MAX1698EVKIT) is available to speed designs.

Applications
Battery-Powered Backlight Applications
Backlight for LCD Panels
Cell Phones
Handy Terminals
PDAs

- Over 90\% Efficiency
- Lossless, Adjustable LED Brightness
- Space-Saving 10-Pin μ MAX Package
- Simpler, Lower Cost, More Reliable Compared to CCFL or EL Backlights
- Up to 5W Output Power

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1698EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

Pin Configuration

Typical Operating Circuit

High-Efficiency Step-Up
 Current Regulator for LEDs

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$, SHDN to GND \qquad …...... \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
EXT, FB, CS, ADJ, REF to GND
GND to PGND... $\pm 0.3 \mathrm{~V}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-Pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .444 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (soldering, 10s).................... $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{C}}=+3.3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		2.7		5.5	V
Quiescent Supply Current	ICC	$\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$		260	500	$\mu \mathrm{A}$
Undervoltage Lockout		Rising edge	2.25	2.4	2.55	V
Undervoltage Hysteresis				80		mV
FB Regulation Voltage	$V_{\text {FB }}$	ADJ $=$ REF	285	300	315	mV
		$V_{\text {ADJ }}=100 \mathrm{mV}$	18	24	30	
CS Trip Current		$\mathrm{FB}=\mathrm{GND}$	0.8	1.5	2.5	A
CS Input Current	ICS				0.8	ARMS
Minimum Off Time	toff(MIN)	FB = GND, ADJ = REF	0.8	1.0	1.2	$\mu \mathrm{s}$
Maximum On Time	ton(MAX)	$F B=G N D, A D J=R E F, C S=G N D$	10	15	20	$\mu \mathrm{s}$
ADJ Start Threshold			30	50	70	mV
ADJ Input Range	$V_{\text {ADJ }}$		0.03		REF	V
FB Input Bias Current	IfB	$\mathrm{V}_{\mathrm{FB}}=300 \mathrm{mV}$	-15		15	nA
ADJ Input Bias Current	IADJ	ADJ = REF	-50		50	nA
Shutdown Supply Current		$\overline{\text { SHDN }}=$ GND		0.01	1	$\mu \mathrm{A}$
REF Output Voltage	VREF	IREF $=0$	1.20	1.25	1.30	V
REF Load Regulation	$\Delta V_{\text {REF }}$	IREF $=0$ to $150 \mu \mathrm{~A}$		-2	-25	mV
REF Short-Circuit Current		REF = GND		0.45	1	mA
REF Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		+0.3	+2	mV/V
EXT Driver Sink/Source Current		$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{EXT}=2 \mathrm{~V}$		0.2		A
EXT Driver On-Resistance		$V_{C C}=5 \mathrm{~V}$			8	Ω
$\overline{\text { SHDN }}$ Input High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	2			V
$\overline{\text { SHDN }}$ Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V			0.8	V
$\overline{\text { SHDN }}$ Input Bias Current	ISHDN	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-1		1	$\mu \mathrm{A}$

High-Efficiency Step-Up Current Regulator for LEDs

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Supply Voltage	V_{CC}		2.7	5.5	V
Quiescent Supply Current	IcC	$\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$		500	$\mu \mathrm{A}$
Undervoltage Lockout		Rising edge	2.20	2.65	V
FB Regulation Voltage	$V_{\text {FB }}$	ADJ = REF	280	320	mV
		$V_{\text {ADJ }}=100 \mathrm{mV}$	13	35	
CS Trip Current		FB = GND	0.8	3.0	A
Minimum Off Time	toff(MIN)	$F B=G N D, A D J=R E F$	0.6	1.4	$\mu \mathrm{s}$
Maximum On Time	ton(MAX)	FB $=$ GND, ADJ = REF, CS = GND	9	21	$\mu \mathrm{s}$
ADJ Start Threshold			25	75	mV
FB Input Bias Current	IFB	$\mathrm{V}_{\text {FB }}=300 \mathrm{mV}$	-20	20	nA
ADJ Input Bias Current	IADJ	ADJ = REF	-50	50	nA
Shutdown Supply Current		$\overline{\text { SHDN }}=$ GND		1	$\mu \mathrm{A}$
REF Output Voltage	$V_{\text {REF }}$	$\mathrm{I}_{\text {REF }}=0$	1.17	1.33	V
REF Load Regulation	$\Delta V_{\text {REF }}$	IREF $=0$ to $150 \mu \mathrm{~A}$		-30	mV
REF Short-Circuit Current		REF = GND		1	mA
REF Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		+2	mV/V
EXT On-Resistance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		8	Ω
$\overline{\text { SHDN }}$ Input High Voltage	V_{IH}	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 5.5 V	2		V
$\overline{\text { SHDN }}$ Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		0.8	V
$\overline{\text { SHDN }}$ Input Bias Current	ISHDN	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-1	1	$\mu \mathrm{A}$

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

High-Efficiency Step-Up
 Current Regulator for LEDs

(Circuit of Figure 2, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BATT}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ADJ}}=\mathrm{V}_{\mathrm{REF}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LED AND INDUCTOR CURRENT WAVEFORMS

High-Efficiency Step-Up Current Regulator for LEDs

Pin Description

PIN	NAME	FUNCTION
1	$V_{\text {CC }}$	IC Supply Voltage Input. Power for internal circuitry. Input range is 2.7 V to 5.5 V .
2	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. In shutdown, the MOSFET turns off, but a current path still exists between the input and output. The minimum forward voltage of the LED array must exceed the maximum VBATT to ensure that the LEDs are off in shutdown.
3	REF	1.25 V Reference Output. Capable of sourcing 150رA for external loads. This pin is internally compensated. Do not connect any bypass capacitors at REF.
4	ADJ	Adjust Input. Allows dynamic adjustment of the output current. FB regulates to 300mV when ADJ = REF.
5,7	GND	Ground
6	FB	Feedback Input. Connect to the external LED current-sense feedback resistor.
8	PGND	Power Ground
9	CS	FET Current-Sense Input
10	EXT	Gate Driver Output

Figure 1. Functional Diagram

High-Efficiency Step-Up
 Current Regulator for LEDs

Figure 2. Typical Operating Circuit

Detailed Description

The MAX1698's high efficiency and small size make it ideally suited to drive LEDs. It operates as a boost DCDC converter that controls output current rather than voltage. Losses are minimized by a low, 300 mV cur-rent-sense threshold. In the standard configuration, a feedback resistor, RFB, sets the current through the primary chain of LEDs. Additional chains of matching LEDs can be added with an equivalent resistor. In matched LED arrays, the secondary chain currents closely track the primary chain. An optional zener diode, D2, prevents overvoltage in the event that one of the LEDs in the primary chain becomes an open circuit. The LED brightness can be adjusted dynamically by a voltage input at ADJ.

Shutdown
In shutdown, the MAX1698's supply current is reduced below $1 \mu \mathrm{~A}$. EXT goes low in shutdown, shutting off the external N-channel FET. This leaves a current path between the input and the LEDs through the boost inductor and catch diode. The minimum forward voltage of the LED array must exceed the maximum VBATT to ensure that the LEDs remain off in shutdown. Typical shutdown timing characteristics are shown in the Typical Operating Characteristics.

Soft-Start
The MAX1698 includes a soft-start function that eliminates input current surges at turn-on. It does this by extending the external FET driver (EXT) minimum offtime during start-up. During the first 512 switching cycles, the minimum off-time is $5 \mu \mathrm{~s}$. It is then allowed to drop to $2 \mu \mathrm{~s}$ for the next 1500 switching cycles. After that time, the minimum off-time falls to the $1 \mu \mathrm{~s}$ value used during normal operation. (See Shutdown/SoftStart Timing in the Typical Operating Characteristics section.)

Design Procedure

Setting the Maximum LED Current

Resistor RFB sets the maximum current in the primary chain of LEDs:

$$
\mathrm{R}_{\mathrm{FB}}=\frac{300 \mathrm{mV}}{\mathrm{I}_{\text {LEDMAX }}}
$$

where ILEDMAX is the maximum LED current.

Adjusting LED Current

RFB sets the maximum LED current. This current can be reduced proportional to the voltage at the ADJ pin (see Normalized Output Current vs. ADJ Voltage in the Typical Operating Characteristics section). Figure 3

High-Efficiency Step-Up Current Regulator for LEDs

Figure 3. Adjusting LED Current
shows the standard method of setting the ADJ voltage. Use the following equation to determine lled:

$$
I_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{ADJ}}}{4.16 \cdot R_{\mathrm{FB}}}
$$

where $V_{\text {ADJ }}$ is the voltage at ADJ. Note that ADJ voltages below 50 mV turns the LEDs off.

Inductor Selection

Choose an inductor with low DC resistance (in the neighborhood of $100 \mathrm{~m} \Omega$) to minimize losses. A typical inductance value for L is $10 \mu \mathrm{H}$; however, values from $3.3 \mu \mathrm{H}$ to $100 \mu \mathrm{H}$ can also be used. Higher inductor values will reduce the MAX1698's switching frequency. The typical operating frequency is given by:

$$
f=\frac{0.67 \cdot V_{\mathrm{BATT}}}{L}
$$

The MAX1698 limits peak inductor current to 1.5A, but also contains a control loop that reduces inductor current as a function of output power. For a given output power, the required inductor peak current rating is approximately set by:

$$
\operatorname{IL}(\text { PEAK })=1.0 \cdot \text { POUT }
$$

where Pout is the output power to all LED banks in watts and $I_{L(P E A K)}$ is in amperes.

Capacitor Selection

The exact value of output capacitance is not critical. Typical values for the output capacitor are $0.1 \mu \mathrm{~F}$ to $10 \mu F$. Larger values help reduce output ripple at the expense of size and higher cost.
The requirements of the input capacitor depend on the type of the input voltage source. However, in many applications, the same capacitor type and value are used for both the input and output capacitors.

Transistor Selection
The MAX1698 drives an external N-channel MOSFET. Since the gate drive voltage is derived from VCC, best performance is achieved with low-threshold NFETs that specify on-resistance with gate-source voltages (VGS) at the voltage supplied at VCC or less. For best results, minimize the FET's RDS(ON). The external NFET's maximum drain-to-source voltage (VDS(MAX)) must exceed the output voltage.

Catch Diode (D1) Selection

The MAX1698's high switching frequency demands a high-speed rectifier. Schottky diodes are recommended for most applications, due to their fast recovery time and low forward-voltage drop. Ensure that the diode's average and peak current ratings exceed the average output current and peak inductor current, respectively. In addition, the diode's reverse breakdown voltage must exceed Vout. For output voltages exceeding 40V, high-speed silicon rectifiers may be required for their higher breakdown voltages.

Zener Diode

For applications requiring open-circuit protection if one of the LEDs in the primary chain opens, add a zener diode as shown in Figure 2. The zener diode protects the MOSFET and output capacitor if the current feedback signal is lost. The zener voltage should exceed the maximum forward voltage of the LED network by at least 2 V .

Applications Information

PC Board Layout
Due to fast switching waveforms and high-current paths, careful PC board layout is required. Protoboards and wire-wrap boards should not be used for evaluation. An EV kit (MAX1698EVKIT) is available to aid most designs.
When laying out a board, minimize trace lengths to CS, the inductor, diode, input capacitor, and output capacitor. Keep traces short, direct, and wide. Keep noisy traces such as the inductor's traces away from FB. Vcc's bypass capacitor should be placed as close to the IC as possible.
Refer to the MAX1698 EV kit for an example of proper layout.

Chip Information

TRANSISTOR COUNT: 2180
\qquad

High-Efficiency Step-Up
 Current Regulator for LEDs

Note: The MAX1698 does not have an exposed pad.
\qquad

